
A Hardware Acceleration Unit for MPI Queue Processing

Keith D. Underwood, K. Scott Hemmert, Arun Rodrigues, Richard Murphy, and Ron Brightwell
Sandia National Laboratories∗

P.O. Box 5800, MS-1110
Albuquerque, NM 87185-1110

{kdunder, kshemme, afrodri, rcmurph, rbbrigh}@sandia.gov

Abstract

With the heavy reliance of modern scientific applications
upon the MPI Standard, it has become critical for the imple-
mentation of MPI to be as capable and as fast as possible.
This has led some of the fastest modern networks to intro-
duce the capability to offload aspects of MPI processing to
an embedded processor on the network interface. With this
important capability has come significant performance im-
plications. Most notably, the time to process long queues
of posted receives or unexpected messages is substantially
longer on embedded processors. This paper presents an as-
sociative list matching structure to accelerate the process-
ing of moderate length queues in MPI. Simulations are used
to compare the performance of an embedded processor aug-
mented with this capability to a baseline implementation.
The proposed enhancement significantly reduces latency for
moderate length queues while adding virtually no overhead
for extremely short queues.

1. Introduction

In the mid-1990’s, message passing became the domi-
nant mechanism for programming massively parallel pro-
cessor systems. By the late-1990’s, the majority of message
passing programs leveraged the MPI Standard [14]. In the
intervening years, billions of dollars have been invested in
developing application codes using MPI. Thus, it has be-
come critically important to insure that new systems imple-
ment MPI as efficiently as possible.

Many approaches have been taken to characterizing the
efficiency of MPI. The most common (and least useful) is
to evaluate the ping-pong latency and bandwidth of the net-

∗ Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

work. While these are necessary first order measures, mod-
els such as LogP [11] and LogGP [1] are more useful. Early
work with these models [13] indicates that the most im-
portant thing for applications was to minimize the over-
head (the time the application processor is involved in the
communication). As a result, some of the highest perform-
ing networks have chosen to offload much of the work of
sending and receiving MPI messages onto the network in-
terfaces [2, 17, 16].

Unfortunately, the second largest impact on application
performance is gap (the inverse of the message rate). Recent
work [7, 3] has indicated that applications tend to traverse
a significant number of entries in the two primary queues
managed by MPI: the posted receive queue and the un-
expected message queue. For networks that use embedded
processors to traverse these queues, traversing long queues
increases gap. Thus, a compromise has been made to de-
crease overhead while increasing gap in some scenarios.

This paper proposes a unique hardware structure to aug-
ment the microprocessor to accelerate list traversal
and matching. The proposed hardware uses associa-
tive matching structures similar in concept to those in
ternary content addressable memories (TCAMs) to per-
form high-performance parallel matching. These struc-
tures are enhanced with list management capabilities
to support the unique combination of ordering seman-
tics and high list entry turnover needed to support MPI
point-to-point message passing.

To better understand basic properties of the design, a pro-
totype has been created in FPGA hardware. The prototype
provides an idea of both the clock rate that can be achieved
and the timing that should be expected. It also serves as an
avenue to explore and refine issues with the control inter-
face. Unfortunately, this implementation would be difficult
to integrate into a “real” environment. Thus, system-level
simulation was used to demonstrate the usefulness of the
proposed hardware. An MPI implementation was created
that leverages the hardware acceleration unit. Using simu-
lation, this MPI implementation was compared to a baseline

implementation using only an embedded processor with the
benchmarks discussed in [21].

The following section provides further background in-
formation on the semantics of MPI and discusses other re-
lated research activities. The software interface and hard-
ware design are described in Sections 4 and 3, respectively.
The MPI implementations and simulator are described in
Section 5. The results from the comparison are presented in
Section 6 and conclusions are presented in Section 7.

2. Background

Conceptually, an MPI implementation has two message
queues — one that contains a list of outstanding receive
requests (the posted receive queue) and one that contains
a list of messages that have arrived that do not match
any previously posted requests (the early arrival or unex-
pected queue). Incoming messages traverse the posted re-
ceive queue for a possible match and end up in the unex-
pected queue if no match is found. Before a request can
be added to the posted receive queue, the unexpected queue
must be searched for a possible match. The search of the un-
expected queue to add an entry to the posted receive queue
must be an atomic operation to insure that a matching mes-
sage does not arrive between the time the unexpected queue
is searched and the receive is posted.

MPI messages are matched using three fields: context
identifier, source rank, and message tag. The context iden-
tifier represents an MPI communicator object. This system-
assigned message tag provides a safe message passing con-
text so that messages from one context do not interfere with
messages from other contexts. The source rank represents
the local rank of the sending process within the commu-
nicator, and the message tag is a user-assigned value that
can be used for further message selection within a particu-
lar context. A posted receive must explicitly match the con-
text identifier, but may “wildcard” the source rank and mes-
sage tag values to match against any value. In addition to
the matching criteria, MPI also mandates an ordering con-
straint. Messages between two nodes in the same context
must arrive in the order in which the corresponding sends
were initiated.

All of the MPI implementations described in pub-
lished literature represent the posted receive and unex-
pected queues as linear lists. Using this method, the time
to traverse these queues grows linearly with the length
of the list [21]. And, the length of the list can grow lin-
early with the number of processes in the parallel applica-
tion [7, 3]. For some networks, the time spent traversing
an arbitrarily long queue may impact the entire sys-
tem, since the network interface may be unable to service
any other requests during the search. This can lead to a sit-
uation where a poorly written or erroneous application can

affect the performance of other applications in the sys-
tem.

In order to reduce the search cost, approaches using hash
tables have been explored [16, 20]. Hash tables can signifi-
cantly reduce the time needed to find a matching entry, but
can also significantly increase the time needed to insert an
entry into the list. Unfortunately, this increase in insertion
time has been prohibitive. The increase in insertion time for
a hash relative to a list is especially noticeable in the zero-
length ping-pong latency test by which high-performance
networks are judged. Hashing is also complicated by the
need to support wildcard matching and maintain ordering
semantics. Unfortunately, an MPI implementation has noa
priori knowledge of whether wildcard values will be used,
so no application-specific approach can be taken.

The use of wildcard matching appears to be widespread.
An initial analysis of several applications at Sandia has re-
vealed that a large number use wildcards. The use of
MPI ANYSOURCE, where the source of the incom-
ing message is not known, is most prevalent. The use
of MPI ANYTAG rarely occurs, perhaps since mes-
sage tags are intended to be used for differentiating
between specific types of messages. Re-coding applica-
tions to eliminate the use of source wildcards is non-trivial.
The semantic equivalent is to post a receive from every pos-
sible source and then cancel those receives that are unused.
This strategy is an inefficient use of processing and mem-
ory resources.

In this paper, we propose a hardware-based scheme for
a network interface to accelerate MPI matching. Previous
work has explored approaches to using network interface
hardware specifically for MPI. The Quadrics QsNet [17]
network has a general-purpose processor on the network
interface that allows for running a user-context thread to
process incoming messages. This approach allows much
of the protocol processing needed to support MPI to oc-
cur on the network interface. However, the thread that im-
plements MPI implements queues as linear lists. The net-
work interface for the Sandia/Cray Red Storm machine [2]
implements the Portals [5] programming interface, which
provides protocol building blocks that support general net-
work functionality as well as MPI efficiently. However, Por-
tals only allows for incoming messages to traverse a linear
list and there is no specific hardware to accelerate matching.
There is also a significant amount of previous work on us-
ing the network interface to implement MPI collective oper-
ations efficiently [9, 8, 15]. Similarly, these approaches fo-
cus on protocol optimizations and efficient data movement
operations rather than list traversal.

The hardware acceleration that we explore in this work
is closely associated with the techniques used to accelerate
lookups in Internet Protocol (IP) routers. IP routers need to
efficiently solve thelongest prefix match(LPM) problem,

where an incoming packet needs to be routed to the net-
work that most closely matches its destination address. As
with wildcard values in MPI, network masks can be used
to cover an entire range of addresses. For an IP router, an
incoming message generates a table lookup for the closest
matching destination, ultimately resulting in the selection
of an outgoing port. For MPI, an incoming message causes
a table lookup on the closest matching posted receive, re-
sulting in the selection of a destination buffer for the mes-
sage. A variety of software and hardware approaches have
been explored to allow for quickly solving the LPM prob-
lem (see [18] for a summary), but none of them are appro-
priate for MPI, due mostly to the need to support the tempo-
ral ordering semantics and frequent table updates required
by MPI semantics.

3. Hardware Acceleration Unit

The proposed integration of the hardware in the overall
network interface chip (NIC) architecture is shown in Fig-
ure 11. A typical network interface has send and receive
(Tx and Rx) DMA capabilities, shown logically separate
here, coupled to the network through logical FIFO inter-
faces that provide a buffering capability. A processor with
a local SRAM manages transactions to and from the net-
work and various other housekeeping tasks through a local
bus. The proposed new components are shown with dashed
lines. To accelerate the posted receive queue, copies of the
header information are provided to the associative list pro-
cessing unit (ALPU) through an added FIFO. A separate
command and result FIFO are also provided to enable de-
coupled, asynchronous interactions with the processor. Sim-
ilarly, copies of new receives being posted are fed to an
ALPU that handles unexpected messages. The details of the
ALPU are shown in Figure 2. The hardware is broken into
three levels of hierarchy: the individual cell, a block of cells,
and the overall associative matching unit.

3.1. Basic Matching Cell

At the lowest level, one of two individual cells of the
match unit is used. A single cell of the match unit for the
posted receive queue is shown in Figure 2(a). The cell con-
tains storage for both the set of bits being matched (the MPI
matching information) as well as a corresponding set of
mask bits (for wildcard bits within MPI). The set of match
bits can range from a pair of bits (one each for the two fields
in an MPI Irecv that can be wildcarded) to a full width
mask as is needed by the Portals interface [5, 4, 6]. In ad-
dition, a valid bit, indicating if the entry is valid, and a tag

1 The prototype design only supports a single process, but extending it
to support a limited number of processes is straightforward.

FIFO

FIFO

Associative

(Posted Recv)

List Processing
Unit

FIFO

FIFO

FIFO

FIFO
FIFO

Local
SRAM

FIFO

FIFO FIFO
Network
From Rx DMA

Engine

Tx DMA
EngineFIFO

Processor

Associative
List Processing

Unit
(Unex Msg)

T
o

H
os

t M
em

or
y

H
ig

h
Pe

rf
or

m
an

ce
 C

on
ne

ct
io

n

H
eader

Data

To Network

Figure 1. The proposed NIC architecture
leveraging an associative list matching unit
(new features shown in dashed lines)

field, used at the discretion of the software, are stored. In the
implementation used here, the tag value is a 20-bit pointer
into the local RAM that points directly to the matching en-
try.

To provide matching for the unexpected message queue,
the cell is changed slightly, as shown in Figure 2(b). In-
stead of storing the mask bits in each cell, the mask bits are
inputs. In all other respects, the cells are the same. Stored
data is passed from one cell to the next. Compare logic (fac-
toring in a set of mask bits that indicate “don’t care” loca-
tions) produces a single match bit. The basic cell then has
three additional outputs that feed into the higher level block.
The first is a single bit that is the logical AND of the match
bit and valid bit (invalid data cannot produce a valid match).
The second is the tag which is muxed through priority logic
to select the right match. The final output is a valid bit to al-
low the higher level block to manage flow control.

3.2. Block of Cells

At the next higher level (Figure 2(c)), a group of cells is
combined into a cell block. In addition to a set of cells, the
cell block contains a registered version of the incoming re-
quest (to facilitate timing), logic to control the flow of data,
logic to correctly prioritize the tags, and logic to generate a
“match location”. The control flow logic drives a separate
enable signal to each cell. The transfer of data from one cell
to the next is enabled in two scenarios: when a match oc-
curs and when new items are being inserted. On a success-
ful match, MPI semantics require that the matched item be
deleted; thus, the match location is broadcast to all of the
cell blocks. Cells at, and below, the match location are en-
abled while cells above it are not, effectively deleting the
matched cell and leaving the lowest priority cell empty.

Cell
Previous

From
Next
To
Cell

To
Priority
Logic

{

{T
ag

{
Request

V

Match

C
om

pa
re

 L
og

ic

M
as

k
B

its

M
at

ch
 B

its

Enable
Cell

Previous
From {Next

To
Cell

T
ag

V

Match
To
Priority
Logic

{

{
Enable

Request
Mask

M
at

ch
 B

its

C
om

pa
re

 L
og

ic

(a) (b)

R
eq

ue
st

 R
eg

.

Request

From
Block
Previous

Block
Next
To

n2 Cells

Available
Space

Delete/Enable Logic
Match Location

Insert Mode

T
ag

M
at

chC
el

l

C
el

l

T
ag

Match

. . .

C
el

l

C
el

l

T
ag

M
at

ch

T
ag

Match

FIFO
Request

Cell Block

Cell Block

.

.

.

Cell Block

Cell Block

FIFO
Control

Result
FIFO

Control Logic

Tag
Match

Address

(c) (d)

Figure 2. (a) A cell containing a single match unit for the posted receive queue; (b) A cell contain-
ing a single match unit for the unexpected message queue; (c) A block of cells; (d) The associative
match engine

During inserts, all cells are enabled if there is space avail-
able above them to compact any possible holes2. “Space
available” is loosely defined. In the implementation dis-
cussed here, “space available” means that either a higher
cell in the current block or the lowest cell in the next block
is empty. This is to maximize clock frequency in the FPGA
prototype and is likely sufficient for all real cases. “Space
available” could easily be expanded to include any cell in
the next higher block or any cell in any higher block if tim-
ing constraints permitted.

The number of cells in a cell block is restricted to a
power of 2 to simplify the task of prioritizing the correct
tag and generating a correct match location. The prioritiza-
tion logic uses the match signal to select the “correct” tag
for output. In Figure 2(c), the highest order cell (furthest to
the right) is the highest priority. In explanation, MPI seman-
tics require that the first matching item in the list be consid-
ered the “correct match”. In the associative matching struc-

2 Holes can occur during inserts if there is time between new elements
being inserted. Holes do not occur on deletion because all data below
the deletion point is shifted upward as part of the delete.

ture, list items are inserted from the left and progress to the
right. At the first level of prioritization, the higher cell in
each pair of cells selects its tag if it matched and the partner
tag if it did not. The match bits are also encoded as the low-
est order bit of the “match location”. At the second level,
the logical OR of the highest order pair of match bits forms
the select line for the mux and is encoded as the second
lowest order bit of the match location (not shown in fig-
ure). This pattern continues throughN levels of muxing for
2N cells. The result is output as the highest order match-
ing tag along with the encoded match location. Obviously,
this muxing structure could easily be collapsed with 4-to-1
or even larger muxes, but 2-to-1 muxes improved placement
regularity in the FPGA prototype.

3.3. Associative List Processing Unit

An associative list processing unit (ALPU) chains sev-
eral cell blocks together and adds control logic to interface
to the rest of the network interface. The cell block outputs
are combined and prioritized in the same manner as cell out-

Match Read
Command

MDONE &

CMD_EF

Clear
Valid
Flags

INSERT or
STOP INSERT

Match
Insert

START
INSERT &

CommandRead
Wait Insert

ReadCommand
InsertSTART

INSERT &
CMD_EF

Insert

RESET

CMD_EF
CMD_EF

MATCH FAIL

INSERT

CMD_EF

INSERT
STOP

CMD_EF
CMD_EF

STOP INSERT INSERT

Figure 3. The controlling state machine

puts are combined in the cell block. Effectively, several cell
blocks are combined to create one large, virtual array of
cells. The modularization into cell blocks simplifies timing
(particularly for the compaction logic) and simplifies the ex-
ploration of the design space.

The control logic in the highest level controls the inter-
action with the rest of the NIC. This control logic deter-
mines when new data is taken from the header input, when
matches begin, when data is written to the output, when
data is read from the control input, and how much space
is available in the ALPU. The governing state machine is
shown in Figure 3. The state machine begins in theMatch
state. In theMatch state, the ALPU accepts a new match
each time a match completes. Successful or failed matches
are output to the result FIFO. If a new command arrives
(the command FIFO becomes not empty), then at the com-
pletion of the current match, the state machine enters the
Read Commandstate. At this point, only theRESETand
START INSERTcommands are valid3. A RESETclears
all of the valid flags and returns to the matching state. A
START INSERTputs the device into insert mode. Insert
mode implies a change in the matching behavior — in-
sert commands are accepted and matching continues until
a match fails. Matches are stopped temporarily for each in-
sert (to maintain correctness), but it is likely that the proces-
sor cannot fill the command FIFO as quickly as the ALPU
can drain it; thus, between inserts, matches are allowed to
continue. Successful matches are output to the result FIFO
and failed matches are held for a retry. This is described in
further detail in Section 4. ASTOP INSERTcommand re-
turns the operation to the standard match mode.

3 Other commands are discarded and an empty command FIFO before
a valid command causes a transition back to the match state.

4. Software Interface

Referencing Figure 1 provides insight into how the pro-
posed hardware fits into the overall software architecture.
In a traditional NIC (e.g. the Red Storm system), the header
and data are separated (logically, if not physically). The pro-
cessor performs list matching functions using the header in-
formation and instructs the DMA. With the proposed hard-
ware, header data would be replicated to the associative list
processing unit. The purpose of the ALPU is to quickly pro-
vide an index into the match list if a match occurs. If a match
does not occur, the processor needs to decide what to do
with the non-matching message (described later); thus, the
processor also receives a copy of all of the header informa-
tion. In general, the purpose of each of the FIFOs is to pro-
vide hardware level decoupling to enable asynchronous op-
eration.

4.1. Processor Interface

The ALPU requires a very limited set of commands (see
Table 1). A pair of commands (START INSERTandSTOP
INSERT) are used to instruct the ALPU to enter and exit in-
sert mode (the mode that is safe for inserts).RESETis used
to clear the ALPU andINSERT is used to insert new items.
Only theINSERThas parameters: the match bits to be used,
the mask bits if needed, and a user defined tag.

The responses expected from the ALPU are shown in
Table 2. TheSTART ACKNOWLEDGEis returned in the re-
sponse to aSTART INSERTcommand and indicates the
number of free slots in the ALPU.MATCH SUCCESSand
MATCH FAILUREare the responses that are expected in
normal ALPU operation. General operation of the device
proceeds as follows. ASTART INSERTand its response
(START ACKNOWLEDGE) must occur before anINSERT
can be performed. Inserts may then be performed until a
STOP INSERT. MATCH SUCCESScan occur at any time,
but MATCH FAILUREcannot occur between aSTART
ACKNOWLEDGEand aSTOP INSERT.

4.2. Overall List Management

To manage MPI queues using an ALPU, a microproces-
sor must develop an appropriate set of heuristics. As previ-
ously shown [7, 3], these queues can grow to tens or hun-
dreds of items; however, at times, the queues can also be
quite short. Because using the ALPU will incur a certain
amount of overhead, the software must only use it when the
queue is adequately long. In addition, the software must rec-
ognize that inserting elements into the ALPU requires a cer-
tain overhead and should attempt to conglomerate insertions
into the list.

Command Description Inputs
START INSERT Instruct the ALPU to enter insert mode None

INSERT Insert a new entry in the ALPU Match bits, Mask bits (optional), and tag
STOP INSERT Instruct the ALPU to exit insert mode None

RESET Clear all entries in the ALPU None

Table 1. Associative list processing unit command set

Response Description Outputs
START ACKNOWLEDGE ALPU has entered insert mode Number of free entries

MATCH SUCCESS Input matched list item Tag from list item matched
MATCH FAILURE Input did not match list item None

Table 2. Associative list processing unit responses

Even though the ALPU will be used for automated high-
performance matching, the processor should maintain a
copy of each list. The copy of the list allows the ALPU to re-
turn a simple pointer to a list entry, instead of the entire en-
try. As entries are matched (and, thus, deleted in the ALPU),
the processor’s copy of the entry must also be deleted. Fur-
thermore, the processor may have entries that have not yet
been entered into the ALPU. A pointer to the start of the
portion of the list that has not been entered into the ALPU
should also be maintained for proper handling of responses
(discussed further in Section 4.4).

4.3. Match Entry Insertion

When the hardware is initialized, the ALPU is empty.
Matching is enabled, but no matches will succeed; thus,
the hardware should be designed such that the processor
can disable the delivery of duplicate information (head-
ers or new posted receives) to the ALPU until it is initial-
ized. As new entries for the queue arrive (new posted re-
ceives or unexpected messages), the processor should begin
to build the appropriate queue in memory. When the queue
length crosses a threshold (defined by heuristics to enable
the best overall performance), the processor sends aSTART
INSERT command to the ALPU. To avoid a potential race
condition where a match in the pipeline fails while the pro-
cessor is performing an insert (inserts are irrevocable), the
processor must wait for anINSERT ACKNOWLEDGEre-
sponse. In response to theSTART INSERTcommand, the
ALPU enters a safe state where matches can occur, but
matches that fail are held for retry until after all inserts com-
plete.

While waiting for the INSERT ACKNOWLEDGE, the
processor may receive one or moreMATCH SUCCESS

or MATCH FAILEDresponses. These must be handled
correctly as described in the next section. TheINSERT
ACKNOWLEDGEwill include a field indicating to the pro-
cessor the number of entries it is safe to insert. In an opti-
mal implementation, the processor will also track this num-
ber to insure that it does not attempt to start inserting when
little or no space is available. Having received theINSERT
ACKNOWLEDGE, the processor should perform the desired
number of inserts as quickly as possible and then send a
STOP INSERTcommand. If the number of inserts to be
performed is large, the processor may need to periodically
clear the result FIFO of successful matches that occur dur-
ing the insert process to prevent it from filling. Each insert
includes the information to be matched, optionally a set of
mask bits (for posted receives), and a tag. The tag can be
any value and will be returned on a successful match; how-
ever, the recommended use is to store a pointer to the posi-
tion in local RAM where the corresponding queue entry is
stored.

4.4. Result Handling

If the ALPU is in use, the processor must retrieve a re-
sponse from the ALPU for every header that is received.
Thus, the processor should first retrieve the copy of the data
provided to it and then retrieve the response. The response
will either be aMATCH SUCCESSor aMATCH FAILED.
On a success, the returned tag can be used to point directly
to the matching list item in the processor’s copy of the list.
On a failed match, the processor must use the local copy of
the data and search the portion of the list that has not yet
been loaded into the ALPU. If there is still no match, the
data must be handled correctly. If the data is a header that
did not match an item in the posted receive queue, it should

be inserted into the unexpected message queue. If the data
is a new posted receive that did not match an item in the un-
expected message queue, it needs to be added to the posted
receive queue.

5. Methodology

There were four aspects of this research. The first was
a benchmark that exposed a significant problem on mod-
ern network interfaces cards (NICs) that leverage embed-
ded processors. The behavior was replicated using a simu-
lation environment that reproduces a modern system envi-
ronment and provides a platform for research into potential
NIC improvements. The simulated NIC was enhanced with
the proposed associative list processing unit (ALPU) and
the MPI implementation was modified to leverage the fea-
ture. Finally, an independent hardware prototype was cre-
ated to provide insight into the performance of the proposed
design.

5.1. Benchmarks

The primary motivation for this design was to reduce the
latency of messages when long posted receive queues or
long unexpected message queues were present. The mag-
nitude of the problem was revealed in an earlier study [21]
using two newly designed benchmarks. These benchmarks
are used again here to study the impacts of the associative
list processing unit.

The benchmark designed to measure the impact of
changes in the pre-posted receive queue length provides
three degrees of freedom: the length of the pre-posted re-
ceive queue, the portion of the pre-posted receive queue
that is traversed, and the size of the message. This en-
ables the user to measure the impacts of both the receive
queue length and the impact of actual queue traver-
sal.

The benchmark created to assess the impact of unex-
pected message queue length on message latency only al-
lows the length of the unexpected message queue and the
size of the message to be varied. It deviates from the tradi-
tional way of measuring latency in that it includes the time
to post the receive for the latency measuring message as part
of the latency. This better reflects the way that MPI is actu-
ally used by applications, which typically have some num-
ber of iterations and post receives in each iteration.

5.2. Simulation Environment

System-level simulation of the matching structure used
a simulator based on Enkidu [19], a component-based dis-
crete event simulation framework. To simulate the CPU

Parameter CPU NIC Processor

Fetch Q 4 2
Issue Width 8 4
Commit Width 4 4
RUU Size 64 16
Integer Units 4 2
Memory Ports 3 1
L1 Caches 64K 2-way 32K 64-way
L2 Cache 512K none
Clock Speed 2Ghz 500Mhz
Lat. To Main Memory 80-85ns 115-120ns
ISA PowerPC PowerPC
Network Wire Lat. 200 ns

Table 3. Processor Simulation Parameters

and NIC processors,sim-outorder from the Sim-
pleScalar [10] tool suite was integrated into this frame-
work. Components representing a simple network, DMA
engines, a memory controller, and DRAM chips were
added. The memory hierarchy was modeled to include con-
tention for open rows on the DRAM chips.

The main processor was parameterized to be similar to
a modern high-performance processor, such as an AMD
Opteron. The NIC processor was parameterized to be sim-
ilar to a processor in higher end network cards, such as the
PowerPC 440 (see table 3). A simple bus on the NIC con-
nected the main processor with the DMA engine, SRAM,
and matching structure. This bus was simulated with a 20ns
delay. The SRAM was modeled with a 3ns delay.

5.3. MPI Implementations

The prototype MPI implements a subset of MPI-
1.2 [14]. With the exception ofMPI Barrier() , only
basic point-to-point communication and basic support func-
tions were implemented(Figure 4). Only support for ba-
sic MPI Datatypes is included andMPI COMMWORLD, is
the only group. The MPI was implemented in roughly 1600
lines of C++ and compiled with GNU g++ 3.34.

The primary data structures are a series of linked lists to
contain requests and the state required to advance them.

• postedRecvQ : Posted receive buffers for incoming
messages to match against.

• activeRecvQ : Active receive requests which re-
quire processing (i.e. rendezvous requests which must
send a reply, requests waiting for a DMA engine, etc.)

4 gcc version 3.3 20030304 (Apple Computer, Inc. build 1495)

MPI Commrank()
MPI Commsize()
MPI Finalize()

MPI Init() †

MPI Irecv()
MPI Barrier() †

MPI Isend()
MPI Recv() †

MPI Send() †

MPI Wait()
MPI WaitAll() †

Figure 4. Subset of MPI implemented.
†indicates functions which are built from
other MPI functions.

• unexpectedQ : List of unexpected messages which
have arrived. Used by receive to match against.

• unexpectedActiveQ : Active unexpected mes-
sages which must be advanced (i.e. unexpected mes-
sages requiring DMA transfer).

• sendQ: Queue message send requests for processing.

All of these primary data structures reside in the NIC mem-
ory. Almost all processing occurs on the NIC. The main pro-
cessor is only required to dispatch message requests to the
NIC and wait for request completion.

The NIC continually executes a loop that performs four
actions: checking the network for new incoming messages;
checking for any new requests from the main processor;
advancing active requests; and updating the ALPU. The
network is polled for new incoming messages. If a new
message is detected, the message headers are stripped off
and compared against posted receive buffers. If a match is
found, the receive request is moved to the active list so it
can set up a DMA or send a rendezvous reply. If no match
is found, the message is entered on theunexpectedQ , to
be matched against future receives. Active send requests are
advanced by allocating network and DMA resources and
performing the send. Once the send is completed, resources
are freed. Receive requests first try to match against the
unexpectedQ to see if their message has already arrived.
If no match is found, they are added the thepostedRecvQ
where they await an incoming header to match. When they
are matched, they can perform any required DMA transfers
before informing the main processor of their completion.

Use of the ALPU requires minimal modification of this
basic structure. Each iteration of the NIC’s loop updates the
posted receive ALPU and the unexpected ALPU. A pointer
is kept to indicate which portions of thepostedRecvQ
andunexpectedQ have been transfered to the ALPU and
which have not. If there are portions of these lists that have
not yet been added to the ALPU, the NIC will attempt to in-
sert them. The NIC sends aSTART INSERTmessage, and
then drains the ALPU’s result FIFO of any match results un-
til a START ACKNOWLEDGEis received. It then attempts

to insert as many of the remaining headers as it can, up-
dating the pointer to indicate which portions of the queue
have been inserted. After the inserts, it will send aSTOP
INSERT command.

When new incoming messages arrive, their headers are
automatically sent to the ALPU. When the NIC detects
these messages, it checks the ALPU’s output queue to see
if it has matched. If it does, the relevant request is removed
from thepostedRecvQ . If no match is found, the portion
of thepostedRecvQ that is not on the ALPU is checked.
If no match is found, the message headers are added to the
unexpectedQ and will be inserted into the widget.

Similarly, when receive requests arrive, the unex-
pected ALPU is checked to see if a match has occurred. If
the widget returnsMATCH FAILURE, any portion of the
unexpectedQ not on the ALPU is checked.

5.4. FPGA Prototype

To provide a reasonable estimate of the size and oper-
ating frequency of the ALPU, a prototype implementation
was created, targeting Xilinx Virtex 2 and Virtex 2 Pro FP-
GAs. The ALPU was designed using JHDL [12], a struc-
tural design tool that provides fine-grained control over the
placement of logic on the FPGA. The final design is param-
eterized to allow different match and tag widths, as well as
different combinations of the total number of cells and the
number of cells in each block.

When designing the unit, the top priorities were small
area, high speed and regularity in placement. The regular
placement constraint arose from the need to create a place-
ment scheme that was programatically adaptable to differ-
ent combinations of match and tag widths. To allow for
higher operating frequencies, the ALPU has been pipelined.
The pipelining used in the design does not allow execu-
tion overlap, and the final implementations can process a
new match every 6 or 7 clock cycles (depending on the to-
tal number of cells in the ALPU and the block size). The
pipeline stages are broken down as follows:

1. Fanout global signals to the blocks of cells; each block
registers its own copy of these signals.

2. Produce a match or not match for each cell.

3. Perform the priority muxing within each block.

4. Perform the prioriry muxing between blocks to deter-
mine if there was a match. If a match was found, this
stage also produces the matched tag and the address of
the highest priority cell that matched. This stage is ei-
ther one or two cycles, depending on the circuit param-
eters.

5. Fanout the delete signals. Again, each block registers
its own copy of these signals.

6. Delete the matched cell.

If desired, it is possible to overlap execution of the first and
last stages (i.e., new match data can be distributed to the
blocks while the last match is being deleted). The simu-
lation results assume a 7 cycle pipelining latency with no
overlap of execution. The current pipelining scheme also al-
lows inserts to happen on every other clock cycle.

6. Results

Three sets of experiments were performed. The first was
an FPGA-based prototype used to explore size and perfor-
mance issues of the design. The second experiment simu-
lated the performance of a NIC with and without the asso-
ciative list processing unit (ALPU) for the posted receive
queue. In the final experiment, the ALPU was applied to
the management of the unexpected message queue. Results
from these experiments indicate that the ALPU is small and
fast enough, and provides sufficient benefits to be practical.

6.1. FPGA Prototype

This section details the sizes and speeds of the ALPU
prototypes. Prototypes for list units accelerating both posted
receives and unexpected messages were created. The Xil-
inx FPGA tool chain was used to map the prototypes to a
Virtex-II Pro 100 FPGA with a -5 speed grade5. We chose
to test units with both 256 and 128 total cells, with block
sizes of 8, 16, and 32. For each test, the match width was
set to 42 and the tag width was 16. These widths are ade-
quate to support an MPI implementation supporting the full
specification on a 32K node system. In addition, there is a
mask bit for every match bit6.

The sizes and speeds of the prototypes are found in Ta-
bles 4 and 5. The size and speed numbers were taken from
the reports generated by the Xilinx tools. The sizes include
the number of 4-input lookup tables (LUTs), the number of
flip flops (FFs), as well as the number of slices7. The speeds
were obtained by constraining the clock to 9ns. Therefore,
the prototypes with block sizes of 8 and 16 will likely run
at even higher frequencies.

Though the ALPU is quite large in an FPGA (the 256-
entry posted receive ALPUs consume approximately 35%
of the FPGA), as an ASIC, the size would be similar to that
of commercially available ternary CAMs. We also estimate
that the move to standard cell ASIC technology would pro-

5 This is the slowest speed grade on a 0.13 micron process.
6 Providing a mask bit for each match bit increases configurability and

supports protocols beyond MPI, such as Portals. Thus, this configura-
tion is the “worst case” size and speed.

7 A slice has two LUTs and two FFs, but often are not used this densely.

Total Block Size Speed
Cells Size LUTs FFs Slices (MHz) Latency

8 17,372 28,908 15,766 112.5 7
256 16 17,573 27,656 15,090 111.4 7

32 18,054 26,971 14,742 100.2 6
8 8,687 14,562 7,945 111.5 7

128 16 8,786 13,897 7,606 112.1 6
32 9.025 13,605 7,431 100.6 6

Table 4. Sizes and speeds of the Posted Re-
ceives ALPU prototypes.

Total Block Size Speed
Cells Size LUTs FFs Slices (MHz) Latency

8 17,339 19,414 11,562 112.1 7
256 16 17,556 17,490 10,631 111.9 7

32 18,045 16,469 10,350 100.9 6
8 8,672 9,773 5,806 111.2 7

128 16 8,777 8,771 5,356 112.1 6
32 9,020 8,311 5,215 100.6 6

Table 5. Sizes and speeds of the Unexpected
Messages ALPU prototypes.

vide a5×8 increase in clock frequency. This means that the
prototypes would all run at about 500MHz; this is equiva-
lent to the core logic speed in the ASC Red Storm network
interface[2]. The implied size and speed of the ALPU in an
ASIC makes it a good candidate for addition into a network
interface offload engine.

6.2. Preposted Latency Impacts

Figure 5 compares the performance of a baseline NIC
(similar in nature to what will be in the Red Storm sys-
tem) to the same NIC enhanced with a 128-entry ALPU
and a 256-entry ALPU. On the left, the full 3D surface is
shown for each configuration while the right shows projec-
tions of several of the lines on a 2D graph. The graphs have
some interesting traits. For the baseline NIC (parts (a) and
(b)), the low end of the graph shows each entry traversed
adding an average of 19 ns of latency. By comparison, for a
Quadrics Elan4 NIC, each entry traversed adds 150 ns of la-
tency. The almost10× performance improvement is not sur-
prising because the NIC being modeled has a significantly
faster clock (2.5×), is dual issue (for integers, floating-point
does not get used), and has separate 32 KB instruction and

8 A 5× increase from FPGA to standard cell ASIC is an extremely con-
servative estimate. It would likely be larger.

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
10
20
30
40
50
60
70
80

Latency (microseconds)

1

10

100

0 20 40 60 80 100

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Percentage of Queue Traversed

0 Preposted Receives
20 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

(a) (b)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
10
20
30
40
50
60
70

Latency (microseconds)

1

10

100

0 20 40 60 80 100

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Percentage of Queue Traversed

0 Preposted Receives
20 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

(c) (d)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
10
20
30
40
50
60
70

Latency (microseconds)

1

10

100

0 20 40 60 80 100

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Percentage of Queue Traversed

0 Preposted Receives
20 Preposted Receives
50 Preposted Receives

100 Preposted Receives
500 Preposted Receives

1000 Preposted Receives

(e) (f)

Figure 5. (a) & (b) Growth of latency with standard posted receive queue; (c) & (d) Growth of latency
using a 128-entry ALPU to manage posted receive queue; (e) & (f)Growth of latency using a 256-
entry ALPU to manage posted receive queue

1

10

100

0 200 400 600 800 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Unexpected Messages

Baseline
128 Entry ALPU
256 Entry ALPU

Figure 6. Growth of latency with unexpected
queue length

data caches. When the queue is too long to fit in cache, the
average time per entry traversed grows to 75 ns. This over-
head shows up even when the entire list is not traversed. For
example, the time to traverse an entire 400-entry list is18µs
and the time to traverse 80% of a 500-entry list is30µs.

Incorporating an ALPU yields two significant advan-
tages, as shown in Figure 5. The most dramatic advantage
is a flat latency curve until the portion of the posted receive
queue that is traversed crosses the size of the ALPU. The
penalty is an 40 ns increase in the baseline latency (zero-
length posted receive queues) as the processor incurs over-
head from being forced to interact with the ALPU. With 4
entries in the posted receive queue, the ALPU breaks even.
Thus, it is entirely possible that the MPI library could be op-
timized to not use the ALPU until the list is at least 4 entries
long. The second advantage provided by the ALPU is the re-
duction in the usage of the cache. By using the ALPU, the
processor is not required to traverse the firstN entries of the
queue, even if the ALPU does not find a match. The storage
required by the ALPU is relatively small (the entire queue
entry does not have to be stored). Each entry in the ALPU
contains matching data only, but the processor stores sev-
eral other pieces of data in the queue entry. Thus, the num-
ber of cache lines the processor must retrieve from mem-
ory is dramatically reduced if it does not have to search the
first several entries.

6.3. Unexpected Message Impacts

In contrast to the impacts on the preposted queue, the
measurements show no advantage from the ALPU for ap-
plications that have extremely short unexpected message

queues. Indeed, with short unexpected message queues, the
ALPU appears to show a small loss in latency performance
(a few tens of nanoseconds). As can be seen in Figure 6, af-
ter the unexpected queue reaches a length of 70 entries, the
ALPU begins to offer a clear and significant advantage. An
interesting phenomenon is seen in each line: as the cache on
the processor in the NIC is exhausted, the latency rises more
dramatically. This mirrors the behavior seen in the manage-
ment of the preposted queue, and, again, the ALPU is able
to delay the point at which this rapid growth in latency oc-
curs.

What is missing in these graphs is the real advantage
of the ALPU. The benchmark is written as conservatively
as possible while still attempting to demonstrate the limita-
tions of a long unexpected queue. Thus, the time to post a
receive is allowed to be overlapped with the time to transfer
the messages. In real life, a long posted receive queue is cre-
ated by pre-posting several receives consecutively (without
matches arriving). Each receive would take progressively
longer and would impact the application execution time di-
rectly. In such a case, the ALPU would offer a much greater
benefit.

7. Conclusions

Both the posted receive queue and the unexpected mes-
sage queue can be significant bottlenecks in the process-
ing of MPI messages. This paper presents a novel feature
to be integrated in a network interface to accelerate the pro-
cessing of both of these critical queues in MPI. The associa-
tive list processing unit (ALPU) was prototyped in an FPGA
and was found to be small enough and fast enough to be in-
tegrated in a modern network interface.

To assess the performance impact of the proposed accel-
erator, a system simulator was used to simulate a baseline
NIC as well as a NIC enhanced with the proposed feature.
The addition of the ALPU was found to add minimal over-
head, even when used on extremely short queues. As the
queue length grew, the addition of the ALPU demonstrated
dramatic drops in impacts of queue length on latency. Even
when the queue length grows beyond the size of the ALPU,
the addition of the ALPU is an inexpensive way to decrease
the pressure on the cache for the processor in the NIC.

8. Future Work

The optimization of MPI is a broad and ongoing effort.
Focus areas include other optimzation techniques to further
accelerate queue traversal and techniques to traverse queues
quickly with fewer hardware resources. Another area of re-
search will focus on how to offload significant portions of
the Portals interface to enable support of MPI, run-time
software, and I/O.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Sheiman. LogGP: Incorporating long messages into the
LogP model. Journal of Parallel and Distributed Comput-
ing, 44(1):71–79, 1997.

[2] R. Alverson. Red Storm. InInvited Talk, Hot Interconnects
10, August 2003.

[3] R. Brightwell, S. Goudy, and K. D. Underwood. A prelimi-
nary analysis of the MPI queue characteritics of several ap-
plications.submitted, May 2004.

[4] R. Brightwell, T. B. Hudson, A. B. Maccabe, and R. E.
Riesen. The Portals 3.0 message passing interface. Tech-
nical Report SAND99-2959, Sandia National Laboratories,
December 1999.

[5] R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen. Por-
tals 3.0: Protocol building blocks for low overhead commu-
nication. InProceedings of the 2002 Workshop on Commu-
nication Architecture for Clusters, April 2002.

[6] R. Brightwell, A. B. Maccabe, and R. Riesen. Design, im-
plementation, and performance of MPI on Portals 3.0.Inter-
national Journal of High Performance Computing Applica-
tions, 17(1):7–20, Spring 2003.

[7] R. Brightwell and K. D. Underwood. An analysis of NIC
resource usage for offloading MPI. InProceedings of the
2004 Workshop on Communication Architecture for Clus-
ters, Santa Fe, NM, April 2004.

[8] D. Buntinas and D. K. Panda. NIC-based reduction in
Myrinet clusters: Is it beneficial? InProceedings of the SAN-
02 Workshop (in conjunction with HPCA), February 2002.

[9] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-
based barrier over Myrinet/GM. InProceedings of the In-
ternational Parallel and Distributed Processing Symposium,
April 2001.

[10] D. Burger and T. Austin.The SimpleScalar Tool Set, Version
2.0. SimpleScalar LLC.

[11] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a realistic model of parallel computation. In
Proceedings 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 1–12, 1993.

[12] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nel-
son, and M. Rytting. A CAD suite for high-performance
FPGA design. In K. L. Pocek and J. M. Arnold, editors,Pro-
ceedings of the IEEE Workshop on FPGAs for Custom Com-
puting Machines, pages 12–24, Napa, CA, April 1999. IEEE
Computer Society, IEEE.

[13] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Ander-
son. Effects of communication latency, overhead, and band-
width in a cluster architecture. InProceedings of the 24th
Annual International Symposium on Computer Architecture,
June 1997.

[14] Message Passing Interface Forum. MPI: A message-passing
interface standard.The International Journal of Supercom-
puter Applications and High Performance Computing, 8,
1994.

[15] A. Moody, J. Fernandez, F. Petrini, and D. K. Panda. Scal-
able NIC-based reduction on large-scale clusters. InPro-
ceedings of the ACM/IEEE SC2003 Conference, November
2003.

[16] Myricom, Inc. Myrinet Express (MX): A high performance,
low-level, message-passing interface for Myrinet, July 2003.

[17] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The Quadrics network: High-performance cluster-
ing technology.IEEE Micro, 22(1):46–57, January/February
2002.

[18] B. Plattner, G. Varghese, J. Turner, and M. Waldvogel. Scal-
able high-speed prefix matching, February 2002.

[19] A. Rodrigues. Enkidu discrete event simulation framework.
Technical Report TR04-14, University of Notre Dame, 2004.

[20] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven gigabit ethernet message passing. InPro-
ceedings of the 2001 Conference on Supercomputing, Nov.
2001.

[21] K. D. Underwood and R. Brightwell. The impact of MPI
queue usage on message latency. InProceedings of the In-
ternational Conference on Parallel Processing (ICPP), Mon-
treal, Canada, August 2004.

